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Nonlinear oscillatory convection in mushy layers
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We study the problem of nonlinear development of oscillatory convective instability
in a two-dimensional mushy layer during solidification of a binary mixture. We adopt
the near-eutectic limit, making the problem analytically tractable using standard
perturbation techniques. We consider also a distinguished limit of large Stefan number,
which allows a destabilization of the system to an oscillatory mode of convection.
We find that either travelling waves or standing waves can be supercritically stable,
depending strongly on the sensitivity of permeability of the mushy layer to variations
in the local solid fraction: mushy-layer systems with relatively weak sensitivity are
more likely to select travelling waves rather than standing waves in the nonlinear
regime. Furthermore, the decrease in permeability is found to promote the subcritical,
and hence more unstable, primary oscillatory states. In addition to mapping out the
location of different stable oscillatory patterns in the available parameter space, we
give the detailed spatio-temporal structure of the corresponding thermal, flow and
solid-fraction fields within the mushy layer, as well as the local bulk composition in
the resulting eutectic solid.

1. Introduction
When a binary alloy solidifies directionally, a planar interface between the liquid

and solid regions can become morphologically unstable owing to constitutional
supercooling. As a consequence of this supercooling, regions of coexisting liquid
and solid phases, referred to as ‘mushy’ regions, are often formed. Mushy regions are
prevalent in a number of industrial and environmental contexts, including metallurgy
(Flemings 1974), the Earth’s core (Fearn 1998), silicate magma chambers (Kerr &
Tait 1986), sedimentary basins (Aharonov, Spiegelman, Kelemen 1997) and sea ice
(Wettlaufer, Worster & Huppert 2000).

The solidification of a binary alloy in a mushy layer can be profoundly influenced
by fluid flow. The flow of interstitial fluid in mushy layers can be driven by a variety
of different physical mechanisms, though natural, buoyancy-driven convection has
received much attention in recent years (see Worster 1997 for a review). In binary
alloys cooled from below, compositional convection can be driven by unstable density
gradients generated as the denser constituent of the alloy is preferentially incorporated
within the solid, making the residual liquid within the mushy layer compositionally
buoyant.

Linear stability analyses allow one to find the critical conditions at which convective
instabilities of infinitesimal amplitudes first occur. Nevertheless, it was anticipated
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(Fowler 1985; Worster 1992) that the steady convective instability in the mushy
layer would be subcritically unstable. This issue has been confirmed by weakly
nonlinear analyses of Amberg & Homsy (1993) and Anderson & Worster (1995)
who investigated a relatively simple model in which the mushy layer is dynamically
isolated from the liquid region above and the solid region below, and the position of
the mush–liquid interface was taken to be fixed.

Chen, Lu & Yang (1994) performed a linear stability analysis of convection in a
mushy layer and identified the possibility of oscillatory onset. Based on a model in
which the mushy layer is coupled with the overlying liquid layer, their analysis suggests
that the oscillations arise from the linear interaction between the double-diffusive
convection in the liquid region and convection in the mushy layer. However, as a
result of an intricate interaction between solidification and heat transfer, convective
motion within the mushy layer can be oscillatory at onset even when the level of
stabilizing thermal buoyancy is set equal to zero and no double-diffusive effects are
present in the system (Anderson & Worster 1995). In particular, it was recognized
(Anderson & Worster 1996) that the physical mechanism behind this new type of os-
cillatory instability is linked to a phase lag between the background macroscopic solid-
ification as heat is withdrawn at a uniform rate from the bottom of the system, and
the local dissolution caused by the fluid motion. In the spirit of Schluter, Lortz &
Busse (1965), Riahi (2002) has analysed the nonlinear stability properties of these
oscillatory convecting states. He considered a limit in which the permeability of
the mushy layer was insensitive to the dominant linear variations in the local solid
fraction. As a result, the bifurcation to oscillatory solutions was found to be always
supercritical. Riahi’s (2002) calculations seemed to show that, in the rather restricted
parameter regime considered, no three-dimensional periodic pattern could be stable,
and that either two-dimensional travelling or standing waves could be stable.

In this paper, we study the nonlinear development of the oscillatory convective
instability identified by Anderson & Worster (1995) further. We consider a limit
in which the leading-order behaviour of the mushy layer corresponds to that of
a non-reacting porous medium with uniform permeability. Unlike Anderson &
Worster (1995) and Riahi (2002), however, we impose no further constraint on
the form of constitutive relationship between the permeability and the local solid
fraction, thus capturing a much wider range of possible morphologies exhibited
by the solid phase of the mushy layer. We perform a weakly nonlinear stability
analysis to resolve which of travelling or standing waves will occur near onset of
compositional convection, treating the travelling and standing waves in a unified way.
A key finding of our analysis is a set of coupled nonlinear evolution equations that
describes the competition of two counter-propagating waves arising via a primary
Hopf bifurcation. Our results yield necessary conditions for the stability of, and the
relative stability between, the travelling and standing waves in the two-dimensional
mushy-layer systems, and form a basis for establishing the complete description of the
possible nonlinear interactions between both types of wave-like convective motion
and steady convection. Mapping out the whole parameter space available for the
oscillatory instability, we provide the first systematic study of the development of
nonlinear oscillatory convection in mushy layers, of which the previous nonlinear
analyses represent special limiting cases.

The plan of the paper is as follows. In § 2 we formulate our problem mathematically,
and take a particular asymptotic limit of the governing equations which both allows
the presence of an oscillatory convective instability and makes the problem analytically
tractable. In § 3 we perform a weakly nonlinear stability analysis and derive the



Oscillatory convection in mushy layers 421

Solid

Mush

Liquid

V

z = 0

z = d

T = TE

T = TL (C0)

Figure 1. A schematic diagram of the system under consideration, showing the solid, mush,
and liquid. The system is continuously being solidified at speed V in the vertical direction.
The mushy layer is assumed to have constant thickness d . The bottom boundary z = 0 of
the mushy layer is kept at the eutectic temperature TE , and the top boundary z = d at the
liquidus temperature TL(C0). The top and bottom boundaries of the mushy layer are taken to
be rigid, impermeable and isothermal. Mixture with concentration C0 is fed into the mushy
layer through the mush–liquid interface.

amplitude equations which govern the evolution of the finite-amplitude oscillatory
convecting states. In § 4 we interpret the results in terms of the stability and structure
of the nonlinear oscillatory patterns. Finally, we give the conclusions in § 5.

2. Formulation
The physical system under consideration consists of a horizontal mushy layer lying

between a completely solid region and a completely liquid region, as illustrated in
figure 1. The system is cooled uniformly from below such that the solid–mush and
mush–liquid interfaces advance upwards with a constant solidification velocity V . We
adopt a simplification that the mushy layer is dynamically isolated from the rest of
the system (Amberg & Homsy 1993) by assuming the top and bottom boundaries
of the mushy layer to be non-deformable, impermeable to fluid flow and isothermal.
The system will be studied in a frame of reference moving upwards with velocity V

relative to the solid formed at the bottom of the mushy layer and the solid dendrites
within the mushy layer, allowing the non-convecting basic state to be independent
of time. In this frame of reference, the bottom boundary of the mushy layer z = 0 is
kept at the eutectic temperature T = TE , while the top boundary z = d is kept at the
liquidus temperature TL(C0) and is a surface through which mixture of composition
C0 is supplied.

The temperature T and composition C of the liquid in the mushy layer are required
to satisfy a linear liquidus relationship

T = TL(C) ≡ TL(C0) + Γ (C − C0), (2.1)

where Γ is a constant. The liquid is assumed to be Newtonian with a linearized
equation of state

ρl = ρ0[1 + β(C − C0)], (2.2)

where ρ0 is a reference density, β = β∗ − α∗Γ , and α∗ and β∗ are the constant
expansion coefficients for heat and solute, respectively. The compositional effect
usually dominates the thermal effect so that β is typically positive and leads to
convection driven primarily by compositional buoyancy.
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We start with a non-dimensional form of the governing equations which is most
similar to that of Worster (1992). In this formulation all material properties are
assumed to be constant and independent of phase. The fluid velocity is scaled with
the prescribed solidification velocity V , length and time with the thermal-diffusion
lengthscale and timescale, κ/V and κ/V 2, and pressure with κµ/Π(0). Here, κ is the
thermal diffusivity, µ is the dynamic viscosity of the liquid and Π (0) is the reference
value of permeability of the mushy layer. The dimensionless variable for both the
temperature and composition is defined by

θ = [T − TL(C0)]/�T = (C − C0)/�C, (2.3)

where �T = Γ �C = TL(C0) − TE , �C = C0 − CE and CE is the eutectic composition.
The dimensionless equations representing conservation of heat, solute, momentum

and mass in the reference frame translating with the eutectic front then assume the
forms (

∂

∂t
− ∂

∂z

)
(θ − Sφ) + u · ∇θ = ∇2θ, (2.4a)

(
∂

∂t
− ∂

∂z

)
[(1 − φ)θ + C φ] + u · ∇θ = 0, (2.4b)

K(φ)u = −∇p − Raθ ẑ, (2.4c)

∇ · u = 0. (2.4d)

The dependent variables in these equations are the temperature θ , the local solid
fraction φ, the Darcy fluid velocity u and the hydrodynamic pressure p. The function
K(φ) defined by K(φ) = Π (0)/Π(φ) accounts for the variations of permeability Π

with the local solid fraction φ. We follow Worster (1992) in assuming a constitutive
expression for Π (φ) in which the permeability remains finite as the solid fraction
approaches zero (see equation (2.15) below).

The dimensionless parameters introduced in the governing equations (2.4) are the
Stefan number, the concentration ratio and the Rayleigh number,

S =
L

cl�T
, C =

CS − C0

C0 − CE

, Ra =
β�CgΠ (0)

νV
, (2.5a–c)

respectively, where L is the latent heat of solidification, cl is the specific heat, CS is
the composition of the solid phase forming the dendrites and g is the acceleration due
to gravity. The Stefan number S expresses the ratio of the latent heat to the sensible
heat. The concentration ratio C represents the compositional contrast between solid
and liquid phases compared to the characteristic variation of composition across
the mushy layer. Note that C is large when the initial composition C0 is close to
the eutectic composition CE , as we shall consider later. The Rayleigh number Ra

relates the destabilizing effect of compositional buoyancy to the stabilizing influence
of viscous dissipation in the porous medium.

Equations (2.4) are augmented by boundary conditions (Amberg & Homsy 1993)
that reflect the simplifying steps taken to study the dynamics of the mushy layer free
from coupling with the liquid region. These boundary conditions are

θ = −1, w = 0 on z = 0, (2.6a, b)

θ = 0, w = 0, φ = 0 on z = δ, (2.7a–c)

where δ = d/(κ/V ) is the dimensionless thickness of the mushy layer and w is the
z-component of u. The temperature is fixed and the vertical velocity is zero on both
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boundaries. In addition, the solid fraction is set to zero at the top of the mush.
For a more detailed discussion of these boundary conditions the reader is referred
to Anderson & Worster (1995). In place of the no-through-flow condition (2.7b),
Chung & Chen (2000) considered a more realistic, but mathematically less convenient,
constant-pressure condition in their nonlinear analysis of steady convection. Their
results showed that an oscillatory instability was still possible, though at slightly
modified parameter values (see also § 6 of Anderson & Worster 1996), indicating
that a mechanism controlling the presence of oscillations is not compromised by the
imposition of the idealized condition (2.7b).

We proceed by reducing the model asymptotically. First, following Amberg &
Homsy (1993), we study a limit in which the thickness of the mushy layer is much
less than the diffusion lengthscale, by letting δ � 1. Secondly, we assume that the
compositional ratio is large by writing

C = C̄ /δ, with C̄ = O(1) as δ → 0, (2.8)

which corresponds to the near-eutectic approximation introduced by Fowler (1985).
Thirdly, we consider the limit in which the Stefan number is large (Emms & Fowler
1994) by taking

S = S̄/δ, with S̄ = O(1) as δ → 0, (2.9)

which corresponds to the situation in which the latent heat liberated during the local
phase change is much larger than the heat associated with the typical variations of
temperature within the mushy layer. Note that it is this particular scaling which allows
the destabilization of the mushy-layer system to the oscillatory mode of convection
to be captured (Anderson & Worster 1995).

Analysis of the balances in equations (2.4) for these asymptotic limits then indicates
the following rescaling of the problem:

(x, z) = δ(x̄, z̄), t = δ2 t̄ , R2 = δRa, (2.10a–c)

θ = θB(z̄) + εθ̂ (x̄, z̄, t̄), (2.10d )

φ = φB(z̄) + εφ̂(x̄, z̄, t̄), (2.10e)

u = 0 + ε
R

δ
û(x̄, z̄, t̄), (2.10f )

p = RpB(z̄) + εRp̂(x̄, z̄, t̄), (2.10g)

where subscript B denotes a non-convecting basic state, in the moving frame, which is
perturbed by the small convective disturbances measured by a perturbation parameter
ε. Note that the basic state is steady and horizontally uniform, while the two-
dimensional disturbances can vary in the vertical and horizontal directions, and in
time.

The approximate basic-state solutions to the problem, consisting of equations (2.4),
(2.6) and (2.7), under the particular asymptotic limits given by (2.8) and (2.9), can be
obtained as series expansions in powers of δ, yielding

θB = −(1 − z̄) + δ
Ω

2
z̄(1 − z̄) + O(δ2), (2.11a)

φB ≡ δφ̄B = δ
1

C̄
(1 − z̄) − δ2

(
1

C̄ 2
(1 − z̄)2 +

Ω

2C̄
z̄(1 − z̄)

)
+ O(δ3), (2.11b)

where the O(1) parameter Ω = 1+ S̄/C̄ represents a measure of the coupling between
the thermal and solid-fraction fields. Note that φB is vanishing and θB is linear in
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the limit δ → 0, the results directly related to the problem of convection onset in a
non-reacting porous layer as studied by Palm, Weber & Kvernvold (1972). It is the
higher-order terms in δ that are associated with effects pertinent to the mushy-layer
system.

The equations governing convective, in general nonlinear, perturbations are(
∂

∂t̄
− δ

∂

∂z̄

)(
θ̂ − S̄

δ
φ̂

)
+ Rŵ

dθB

dz̄
− ∇2θ̂ = −εRû · ∇θ̂ , (2.12a)(

∂

∂t̄
− δ

∂

∂z̄

)(
(1 − δφ̄B)θ̂ − θBφ̂ − εθ̂ φ̂ +

C̄

δ
φ̂

)
+ Rŵ

dθB

dz̄
= −εRû · ∇θ̂ , (2.12b)

∇2[K(δφ̂B + εφ̂)û] − ∂

∂x̄
[û · ∇K(δφ̂B + εφ̂)] − R

∂2θ̂

∂x̄∂z̄
= 0, (2.12c)

∇2[K(δφ̂B + εφ̂)ŵ] − ∂

∂z̄
[û · ∇K(δφ̂B + εφ̂)] + R

∂2θ̂

∂x̄2
= 0, (2.12d)

with the boundary conditions

θ̂ = 0, ŵ = 0 on z̄ = 0, (2.13a, b)

θ̂ = 0, ŵ = 0, φ̂ = 0 on z̄ = 1. (2.14a–c)

An important feature of the dynamics of the mushy layer is the variation of the
permeability with the local solid fraction. Here, since the basic-state solid fraction
is small, of O(δ), and the perturbation to the solid fraction is also expected to be
small in the context of the weakly nonlinear theory to be developed, we expand the
function K(φ) in a regular series for φ � 1

K(φ) = 1 + K1φ + K2φ
2 + O(φ3), (2.15)

where K1 and K2 are constants specifying a particular form of the constitutive
relationship. Note that K1 has to be positive in order to ensure the decreasing of
the permeability Π (φ) with increasing solid fraction φ. In contrast to Anderson &
Worster (1995) and Riahi (2002) who kept K1 = O(δ), no such restriction on K1 is
made in the present analysis, i.e. K1 is formally assumed to be O(1) in the limit
δ → 0. The results derived with K1 treated in this way can readily be reduced to the
particular case of small K1 studied by Anderson & Worster (1995) and Riahi (2002),
and we shall recover results for that case.

3. Weakly nonlinear stability theory
Following a standard weakly nonlinear approach (e.g. Malkus & Veronis 1958;

Veronis 1959), our main aim is to derive some fundamental results which are basic
to the understanding of the behaviour of oscillatory convective perturbations when
nonlinear interactions become important.

We seek nonlinear oscillatory solutions of (2.12)–(2.14) with frequency ω. In order
to pursue a nonlinear analysis with both ε � 1 and δ � 1, it is necessary to consider
the double expansions in ε and δ for the perturbation quantities, which we assume in
the forms

θ̂ = (θ00 + δθ01 + · · ·) + ε(θ10 + δθ11 + · · ·) + ε2(θ20 + δθ21 + · · ·) + · · · , (3.1a)

Ωφ̂ = (φ00 + δφ01 + · · ·) + ε(φ10 + δφ11 + · · ·)
+ ε2(δ−1φ2(−1) + φ20 + δφ21 + · · ·) + · · · , (3.1b)
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Ω1/2û = (u00 + δu01 + · · ·) + ε(u10 + δu11 + · · ·) + ε2(u20 + δu21 + · · ·) + · · · , (3.1c)

Ω1/2R = (R00 + δR01 + · · ·) + ε(R10 + δR11 + · · ·) + ε2(R20 + δR21 + · · ·) + · · · , (3.1d)

ω = (ω00 + δω01 + · · ·) + ε(ω10 + δω11 + · · ·) + ε2(ω20 + δω21 + · · ·) + · · · . (3.1e)

As the problem involves two small parameters, ε and δ, care is required with regard
to their relative sizes. Here, we assume that 0 � ε � δ � 1, since we expect finite-
amplitude results to hold as long as ε � 1. Note the appearance of a singular
term in the expansion for φ̂ at O(ε2) as δ → 0. Thus, in order for the asymptotic
representation of φ̂ to be well defined, we further assume that ε2 � δ. As described
in the analysis of Anderson & Worster (1995), who studied the nonlinear evolution of
steady patterns, the inclusion of this term is necessary in order to balance a driving
term of O(ε2δ−1) in the solute balance (2.12b). In the present, oscillatory context, we
shall see that the correct treatment of this term has important ramifications in terms
of the stability of nonlinear oscillatory states.

We explicitly exhibit the unknown frequency ω (Veronis 1959) and introduce a slow
timescale τ = ε2 t̄ in (2.12a, b) by means of a transformation ∂/∂t̄ �→ ω∂/∂t̃ + ε2∂/∂τ .
Expressions (3.1) are then substituted into a rescaled version of (2.12)–(2.14), equation
sets are generated by grouping terms of different powers of εmδn (m =0, 1, 2, . . . ; n=
−1, 0, 1, . . .), and the solutions of known period, 2π, are sought. The procedure
rapidly becomes algebraically cumbersome and hence, for brevity, we shall confine
ourselves to an outline of the principal results.

At O(ε0δ−1), we find from (2.12a) and (2.12b) that

S̄ω00

∂φ00

∂t̃
= 0, C̄ ω00

∂φ00

∂t̃
= 0. (3.2a, b)

These equations are solved by taking ω00 = 0. As pointed out by Anderson & Worster
(1996), this result implies that a timescale of the oscillations is O(δ), rather than the
O(δ2) suggested by the initial rescaling (2.10b).

At the next order, O(ε0δ0), we recover the equations defining the linear stability
problem studied by Anderson & Worster (1996). In terms of the time t̄ , the general
solutions at this order take the form

θ00 = −sin(πz̄)η00(x̄, t̄ , τ ) + c.c., (3.3a)

φ00 = − 1

C̄

π(π2 + k2)

π2 − ω2
01

[
eiω01(z̄−1) + cos(πz̄) +

iω01

π
sin(πz̄)

]
η00(x̄, t̄ , τ ) + c.c., (3.3b)

u00 =
π

k
cos(πz̄)

∂η00(x̄, t̄ , τ )

∂x̄
+ c.c., (3.3c)

w00 = k sin(πz̄)η00(x̄, t̄ , τ ) + c.c., (3.3d)

R00 =
π2 + k2

k
, (3.3e)

where the one-dimensional planform function is given by

η00(x̄, t̄ , τ ) = A00(τ )eikx̄eiωt̄ + B00(τ )e−ikx̄eiωt̄ . (3.4)

Here, A00 and B00 are the leading-order complex amplitudes of leftward and rightward
travelling waves, respectively, and k is the horizontal wavenumber of the perturbation.
A standing wave pattern is represented by A00 = B00.

At the Hopf bifurcation, the frequency of the oscillatory convection is ω01. In
order to determine ω01, involved in the leading-order solutions (3.3), it is necessary
to pursue the perturbation analysis further. Specifically, at O(ε0δ1), we find an
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inhomogeneous system of equations which admits a solution only if its homogeneous
part is orthogonal to all solutions of the adjoint homogeneous problem. We find
that the real part of this solvability condition determines the linear Rayleigh number
correction R01 as a function of k and ω01,

R01

R00

=
1

4

K1

C̄
+

[
1

4
+

π2(1 + cosω01)(
π2 − ω2

01

)2

]
S̄

ΩC̄ 2
, (3.5a)

and the imaginary part determines ω01 as a function of k,

0 = ω01

[
1 +

π2 + k2

π2 − ω2
01

(
1 − 2π2

π2 − ω2
01

sin ω01

ω01

)
S̄

Ω2C̄ 2

]
. (3.5b)

A careful account of the linear stability properties of the neutral oscillatory mode
determined from (3.5a, b), as well as of the transition between the real convective
mode and the oscillatory mode in terms of the stability boundaries in the parameter
space can be found in Anderson & Worster (1996).

The O(ε0δ1) correction terms in expressions (3.1a–c) take rather complicated
forms and are therefore not recorded here, except to note that they comprise the
particular responses forced by the leading-order solutions (3.3), and the solutions to
the homogeneous problem analogous to (3.3) with η00(x̄, t̄ , τ ) replaced by

η01(x̄, t̄ , τ ) = A01(τ )eikx̄eiωt̄ + B01(τ )e−ikx̄eiωt̄ . (3.6)

By linearly combining solutions found at O(ε0δ0) and O(ε0δ1), we find that the
amplitudes of interest can be defined as A ≡ A00 + δA01 and B ≡ B00 + δB01. In
what follows, we shall determine how the nonlinear terms affect the evolution of A
and B at large times, t̄ .

At O(ε1δ−1), the relevant set of equations is given by (3.2) except that ω00 is now
replaced by ω10. These equations are solved by setting ω10 = 0.

The solvability of the O(ε1δ0) and O(ε1δ1) systems of equations requires

R10 = 0 and R11 = 0, ω11 = 0, (3.7a–c)

respectively. These results can be traced to the symmetry of the nonlinear terms in
the perturbation equations (2.12). In view of the results that ω10 = 0 and ω11 = 0, it
follows that it is not until at least O(ε2δ0) that the nonlinear detuning, ω20, of the
Hopf-bifurcation frequency, ω01, is determined. (Note: We believe that Riahi (2002,
§ 3) incorrectly states that ω20 is fixed at zero by virtue of the solvability condition at
O(ε2δ−1). Instead, at O(ε2δ−1) we shall find a system (see equation (3.8) below) which
is integrable without any adjustment of free quantities appearing in (3.1).)

Further vital reinforcement of the linear oscillatory convection mode takes place at
O(ε2δ−1). In particular, from the solute balance (2.12b), we obtain

C̄

(
ω01

∂

∂t̃
− ∂

∂z̄

)
φ2(−1) = −C̄

(
ω20

∂

∂t̃
+

∂

∂τ

)
φ00, (3.8)

where ω20 is, as yet, undetermined. A similar balance is provided by the heat
conservation (2.12a); cf. (3.2a) and (3.2b). The balance expressed by (3.8) reflects
that there are two natural timescales associated with the nonlinear development of
the oscillatory mode. The faster timescale, of O(ε2), is that associated with the growth
rate of perturbations, while the slower timescale, of O(δ), is that associated with the
period of the oscillatory convection itself. In passing, we remark that there is also
a third, intermediate timescale, of O(δ2), that is characteristic of thermal diffusion;
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however, this process plays only a passive role in that it is not fundamental in
sustaining oscillatory motions in the system.

Finally, we arrive at the stage at which the desired evolution of the nonlinear
oscillatory disturbances can be determined. Specifically, by combining the solvability
conditions at O(ε2δ0) and O(ε2δ1), we obtain the equations

a
dA

dτ
= bA + cA |A |2 + dA |B|2, (3.9a)

a
dB

dτ
= bB + cB|B|2 + dB|A |2, (3.9b)

for the complex amplitudes A and B, correct to O(δ), of the leftward and rightward
travelling waves, respectively. The complex coefficients a, b, c and d are given in
the Appendix. The system (3.9) describes the nonlinear interaction between the
two counter-propagating waves near a Hopf bifurcation point, and can be used to
determine the stability, and relative stability, of the travelling and standing waves. The
general form of these equations can be derived by considering the group of symmetries
that characterize the physical system (e.g. Crawford & Knobloch 1991), and is known
from other systems, such as a binary mixture in a porous medium (Knobloch 1986),
thermosolutal convection (Deane, Knobloch & Toomre 1987), rotating Boussinesq
convection (Knobloch & Silber 1990) and magnetoconvection (Matthews & Rucklidge
1993).

4. Results
4.1. Bifurcation structure

We shall analyse the amplitude equations (3.9) which represent an asymptotically exact
model of the behaviour of the full system (2.12) near the primary Hopf bifurcation.
We notice that, by representing the complex amplitudes A and B in terms of moduli
and phases, the evolution equations for the moduli decouple from those for the phases
if the amplitude equations (3.9) are first divided by the coefficient a (a is non-zero
in the region of interest, see below). Generically, the moduli equations admit the
following set of equilibrium solutions:

(i) conduction state:

(|A |, |B|) = (0, 0); (4.1)

(ii) a pair of travelling waves:

(|A |, |B|)= (|A TW|, 0) or (0, |A TW|), with |A TW|2 = −2π
ar

|a|2c̃r

R2; (4.2a, b)

(iii) standing waves:

(|A |, |B|) = (|A SW|, |A SW|), with |A SW|2 = −2π
ar

|a|2(c̃r + d̃r)
R2. (4.3a, b)

Here, c̃ = c/a, d̃ = d/a, R2 = R20 + δR21, and the subscript r indicates the real part.
Note that, in writing (4.2b) and (4.3b), we have made use of the linear relationship
between a and b, given, correct to O(δ0), by (A 1b) in the Appendix.

By analysing the linear stability properties of the solutions (4.2) and (4.3), we
find that the travelling waves are stable if c̃r + d̃r < 2c̃r < 0, and the standing
waves are stable if 2c̃r < c̃r + d̃r < 0, given that the coefficient ar is positive in
the parametric region where the oscillatory convection is possible (see § 4.2.2). The
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Figure 2. Bifurcation diagrams in the (c̃r, d̃r − c̃r)-plane, showing the equilibrated amplitude
of the travelling waves (TW) and standing waves (SW), ε(|A |2 + |B|2)1/2, as a function of the
Rayleigh number, R. Solid curves indicate (linearly) stable finite-amplitude oscillatory states,
while dashed curves correspond to unstable oscillatory states. The (c̃r, d̃r − c̃r)-plane divides
into six regions, I–VI, each characterized by the distinct branching behaviour and stability
assignments of the two-dimensional primary oscillatory patterns. Note that the stable solutions
can be identified in regions marked I and II, corresponding to the standing and travelling
waves, respectively.

structure of the bifurcation diagrams and the stability properties of the equilibrium
solutions (4.1)–(4.3), including the relative stability of the competing patterns, can be
conveniently summarized in the (c̃r, d̃r − c̃r)-plane, as illustrated in figure 2. Note that
both non-trivial solution branches, i.e. the left- and right-travelling waves, and the
standing waves, bifurcate simultaneously at the linear Rayleigh number for the onset
of oscillatory convection, R =R(o) ≡ R00 + δR01. The solid curves indicate (linearly)
stable solution branches, and the dashed curves unstable ones. We see that stable
solutions are present provided both travelling- and standing-wave branches bifurcate
supercritically. In other words, it is not possible for a pattern to be stable when
another one is subcritical. Furthermore, if both branches bifurcate supercritically, the
stable solution is the one with the larger Nusselt number (∼1 + ε2(|A |2 + |B|2)). To
investigate the eventual stabilization of the initially unstable subcritical branches of
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either type at larger amplitudes requires delicate higher-order analysis, which is not
attempted here.

4.2. Stability diagrams

The forgoing analysis has shown that either travelling or standing waves can be
stable near onset, depending on the particular values of the complex coefficients in
the amplitude equations (3.9). In the interest of establishing specific predictions for
the mushy-layer system, we investigate the dependence of the stability assignments
of the oscillatory patterns on the system control parameters S̄, C̄ , K1 and K2. Even
at leading order, O(δ0), the coefficients are complicated functions of the system
parameters, as well as the wavenumber k and the frequency ω01. From now onwards
we shall concentrate, for simplicity, only upon the leading-order results quoted in the
Appendix.

In general, in order to assess the stability of travelling and standing waves properly,
the coefficients in the amplitude equations have to be evaluated at a value of the
wavenumber k that minimizes the Rayleigh number R(o) for the onset of the oscillatory
instability. Nevertheless, by performing numerical computations for the linear stability
problem (see equations (3.5a, b)), similar to those by Anderson & Worster (1996), it
can be shown that the wavenumber that minimizes R(o) is only slightly greater than
π, the critical wavenumber corresponding to the steady convective mode, over the
parameter ranges where the oscillatory mode becomes unstable before the steady
mode. This suggests that we can reduce the amount of calculation involved by fixing
the wavenumber at k = π (see § § 4.2.2–4.2.4). A discussion of the stability results for
the case when k is set to its optimum value is deferred to § 4.2.5.

4.2.1. Stability considerations for steady convection

For ω01 = 0, and in the limit of small K1, the solutions presented in § 3 reduce to
the results of the weakly nonlinear theory for steady mushy-layer convection in two
dimensions given by Anderson & Worster (1995). They showed that a two-dimensional
pattern of rolls is always supercritically bifurcating. Note that in the present analysis,
in contrast, we have assumed that K1 = O(1) as δ → 0. It is natural to ask, therefore,
whether the inclusion of the physical effect associated with leading-order, nonlinear
permeability variations due to solid-fraction perturbations, measured by K1, would
cause a change in the nature of the pitchfork bifurcation to rolls, by making steady
convection more sensitive to the Darcy drag and thus altering the positive feedback
required for a subcritical bifurcation. Indeed, by analysing the roll solution to the
amplitude equation (3.9a), and using equations (A 1) and (A 2a) with ω01 set to zero,
we find that it is now possible for steady roll convection to be subcritical when

K1

ΩC̄
>

√
3

32

[
35 + 352

K2

(ΩC̄ )2

]1/2

− 3

32
(4.4)

and supercritical otherwise. For the case K2 = 0, we thus obtain subcritically
bifurcating rolls if K1/(ΩC̄ ) > 1

32
(
√

105 − 3) ≈ 0.226 (cf. Amberg & Homsy 1993).

4.2.2. Stability considerations in the limiting case of ω01 � 1

Before presenting the results of the full computations, we address a particular
limiting case in which the pattern selection problem can be resolved explicitly.
Specifically, since the oscillatory frequency ω01, involved in the leading-order
coefficients (A 1)–(A 3) of (3.9), has to be determined as the root of the transcendental
equation (3.5b), it is, in general, not possible to give a simple criterion for the stability
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of travelling and standing waves. We may, however, make some analytical progress
by recognizing that close to the boundary in the parameter space where the Hopf
bifurcation to travelling and standing waves coincides with the pitchfork bifurcation
to steady convection, the frequency at the Hopf bifurcation is small. For simplicity,
we confine our discussion of the limiting case ω01 → 0 to small values of K1, of O(δ)
(cf. Riahi 2002), though the asymptotic results to follow can readily be generalized to
K1 = O(1).

Expanding (3.5b), with k set equal to π, for small values of ω01, we obtain

π2

(
Ω − 2

S̄

ΩC̄ 2

)
ω01 + 2

3
(π2 − 9)

S̄

ΩC̄ 2
ω3

01 + O
(
ω5

01

)
= 0. (4.5)

A first approximation to the non-trivial solution of (4.5) can be obtained by neglecting
terms of O(ω5

01). This yields

ω2
01 ∼ 3π2

π2 − 9

[
1 − 1

2

(ΩC̄ )2

S̄

]
. (4.6)

Note that the bifurcation to oscillatory convection occurs when ω2
01 is positive, or,

equivalently, when the coefficient ar of the time derivative in the moduli equations,
evaluated at ω01 = 0, is negative (cf. Anderson & Worster 1995). Thus, in the range of
interest S̄/(ΩC̄ )2 > 1

2
(see equation (4.6)). Note that, since we have taken k = π, the

point at which ω01 vanishes corresponds to the appearance of the oscillatory mode at
the minimum of the neutral stability curve for the real, rather than oscillatory, mode.

Recall that the stability assignments of the oscillatory solutions are determined
by the signs of c̃r, c̃r + d̃r and d̃r − c̃r (cf. figure 2). On performing the expansion,
consistent with (4.6), of these expressions, and considering the signs of expressions
thus obtained in the region S̄/(ΩC̄ )2 > 1

2
, we find that the standing and travelling

waves are stable when

Q̄1 <
S̄

(ΩC̄ )2
< Q̄2, and

S̄

(ΩC̄ )2
> Q̄2 (4.7a, b)

respectively, where

Q̄1 =
3π2

2(102π4 − 569π2 − 2048)

[
16π2 − 65 − 12(π2 − 9)

S̄

K2

]
, (4.8a)

Q̄2 =
π2

2(2048 + 181π2 − 30π4)

[
48π2 − 121 − 12(π2 − 9)

S̄

K2

]
. (4.8b)

It should be remarked that the criteria we have obtained are restricted by the condition
ω01 � 1, i.e by S̄/(ΩC̄ )2 � 3

2
π2/(2π2 + 9) ≈ 0.515.

Relations (4.7), along with (4.8), embody an important result from the viewpoint of
the pattern selection problem and transitional behaviour between the stable oscillatory
states. We note first that the presence of oscillatory convection in the mushy-layer
model is controlled by the parameters S̄ and C̄ (or, in original, unscaled variables,
by S, C and δ), as can be deduced from (3.5b) or (4.6). Our asymptotic results
reveal that a preference for distinct wave patterns, and hence the possibility of their
realization in experiments, is dominated by a particular physical effect associated
with nonlinear interaction between temperature and flow fields, represented by the
terms proportional to S̄/K2 in (4.8). A relationship between these asymptotic stability
criteria and the numerically determined stability results is discussed in the following
section.
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Figure 3. Stability regions in the (δS, δC )-plane. A diagram showing the regions in the
parameter space where various features of finite-amplitude two-dimensional convection can be
identified. Steady states (SS), taking the form of rolls, are supercritically stable in (a)–(c), and
subcritically unstable in (d ). Inside the outermost solid curve in each of the plots, oscillatory
solutions are located; this region can split into a number of portions, marked I–VI, in which
distinct oscillatory branching behaviour can be identified (see figure 2). The light-shaded
portion corresponds to those parameter values where stable travelling waves are predicted,
while the dark-shaded portions indicate where stable standing waves are expected to appear.
In the regions where either oscillatory bifurcation is subcritical (regions III–VI, cf. figure 2),
our analysis does not determine the preferred behaviour. Four representative cases are shown:
(a) K1 = 0, K2 = 0; (b) K1 = 0, K2 = 0.05; (c) K1 = 0, K2 = 1; (d ) K1 = 3, K2 = 6.

4.2.3. Stability regions: (δC , δS)-space

In the general case of ω01 = O(1), the coefficients c̃r and d̃r were computed
numerically in order to investigate whether travelling or standing waves are preferred
close to the onset of oscillatory convection in mushy layers. We begin in figure 3
with a representation of the regions of stability in the parameter space spanned by
S̄ and C̄ , for four representative sets of permeability coefficients K1 and K2. For
S̄/(ΩC̄ )2 < 1

2
, the convective instability is steady (see equation (4.6)), taking the form

of two-dimensional rolls. From the criterion (4.4), we find that steady rolls in fig-
ures 3(a–c) bifurcate supercritically, while the roll branch bifurcates subcritically, and
is thus unstable with respect to two-dimensional perturbations, on the scale of fig-
ure 3(d ).

The region where S̄/(ΩC̄ )2 > 1
2
, lying to the left of the outermost solid curves

in each of the plots in figure 3, divides into a number of portions, labelled I–VI,
corresponding to distinct oscillatory branching behaviour as classified in figure 2.
The regions with stable patterns are, in addition, shaded, with light and dark shading
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corresponding to travelling and standing waves, respectively. Note that the two
patterns cannot be stable simultaneously. We see that for the case K1 = 0, K2 = 0
(figure 3a), both oscillatory branches bifurcate supercritically (cf. figure 2), with the
travelling waves being the stable pattern. The mushy-layer system behaves like a
passive porous medium, i.e. convection is not affected by the deviations in the local
growth of dendrites through the action of the Darcy drag forces. There is then
no positive feedback mechanism in the system, which is required for a subcritical
bifurcation.

For non-zero K2, with K1 = 0, standing waves may be seen first as C̄ is decreased,
depending on the value of S̄ (figure 3b). If standing waves are seen first, they are
replaced by travelling waves as C̄ is decreased further. For ω01 � 1, or, equivalently,
close to the boundary between steady and oscillatory behaviour, the approximate
location of the curve marking the transition between stable travelling and standing
waves is given by S̄/(ΩC̄ )2 = Q̄2 from (4.7). We note that this transition appears
only if 0 < K2 � 12π2(π2 − 9)/(39π4 − 151π2 − 1024) ≈ 0.080. (The particular case
of K1 = 0, K2 = 0.05 was also considered by Riahi (2002), who examined the limit of
K1 → 0. Note, however, an incorrect identification of stability regions in figure 7 of
his paper: when S̄/(ΩC̄ )2 < 1

2
, i.e. Gt < 1

2
in his notation, an oscillatory instability is

no longer present in the system.)
As K2 increases further, with K1 still fixed at zero, subcritical behaviour becomes

discernible (figure 3c, region VI). From (4.7a), we find that standing waves may
remain unstable until C̄ decreases to a curve given approximately by S̄/(ΩC̄ )2 = Q̄1

before gaining stability (with S̄ and δ fixed); near the boundary between the steady
and oscillatory convection, this transition occurs if 0 < K2 � 36π2(π2 − 9)/(1024 +
187π2 − 27π4) ≈ 1.290 (though it is not seen in figure 3b). The standing waves may
lose stability to travelling waves as C̄ decreases, depending on the value of S̄. As the
origin of the (δC , δS)-plane is approached, stability is transferred back to standing
waves; this result is limited, however, in that our asymptotic analysis requires both
C̄ and S̄ to be O(1). The situation depicted in figure 3(c) persists qualitatively for yet
larger K2.

Figure 3(d ) shows the case when the permeability of the mushy layer is sensitive to
both the linear and quadratic variations in the local solid fraction. A representative
case of K1 = 3, K2 = 6 is shown, corresponding to the constitutive relationship Π =
(1− φ)3 adopted in many theoretical studies on convection in mushy layers (e.g. Fowler
1985; Worster 1992; Schulze & Worster 1999). Depending on the selected value of
S̄, our calculations reveal the presence of an interval of stable travelling waves.
Throughout the rest of the oscillatory region, at least one of the primary branches
is subcritical (regions III and IV). Recall that in the regions where either oscillatory
bifurcation is subcritical, our analysis cannot determine the preferred behaviour near
onset.

4.2.4. Stability regions: (K1, K2)-space

One of the most important aspects of figure 3 is that the stability of the primary
oscillatory branches is controlled primarily by the permeability coefficients K1 and
K2, although the presence of the oscillatory instability is determined solely by the
Stefan number S, compositional ratio C and the mushy-layer thickness δ. In order
to examine the stability for a wider range of possible morphologies of the solid
dendrites, reflected in the particular values of K1 and K2, we show in figure 4 the
stability boundaries in the (K1, K2)-plane for four illustrative cases of fixed S̄ and C̄ .
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Figure 4. Stability regions in the (K1,K2)-plane. Four illustrative cases are shown: (a) S̄ = 0.1,
C̄ =0.05; (b) S̄ = 1, C̄ = 0.05; (c) S̄ = 1, C̄ = 0.2; (d ) S̄ =1, C̄ = 0.4. Note that for each set of
S̄ and C̄ the oscillatory instability is possible (cf. figure 3). The light-shaded and dark-shaded
portions correspond to those parameter values for which stable travelling and standing waves
are predicted, respectively. Also note that the presence of the oscillatory convective modes,
unlike their stability, is not controlled by the permeability coefficients K1 and K2.

Note that for each set of S̄ and C̄ considered, the oscillatory instability is possible
(cf. figure 3).

For smaller values of S̄ and C̄ (figure 4a), the travelling waves are found to be the
only stable pattern, existing for any K2. For larger S̄, with C̄ kept fixed, the travelling
waves give way to stable standing waves as K2 increases (figure 4b). In both cases
note the appearance of an unbounded domain in which both oscillatory branches
are subcritical (region IV), separated from the region with the stable travelling waves
by a relatively narrow region in which subcritical travelling waves and (unstable)
supercritical standing waves coexist (region III).

For moderate values of S̄ and C̄ (figure 4c), the travelling waves lose stability
to standing waves at slightly lower values of K2 compared with figure 4(b), and
the region in which subcritical, and hence unstable, travelling and standing waves
are found is left bounded (cf. figure 4b). With increasing C̄ (figure 4d ), we find
that the regions of stable oscillatory patterns become bounded. If K1 is sufficiently
small, the travelling waves may lose stability and the standing waves become the
preferred pattern. The standing waves can lose stability again as K2 is increased
further, leaving a region with no stable primary pattern (region VI). Note that all the
genuine bifurcation structures, itemized in figure 2, can be realized in the mushy-layer
system in this particular case.
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Figure 5. Stability regions in the (δC , k/π)-plane for fixed S̄ = 0.5, K1 = 3 and K2 = 6. Notice
that a slice through k = π corresponds to a slice through S̄ =0.5 in figure 3(d ). In the region
labelled SS, the steady rolls are subcritically bifurcating, and thus unstable. The oscillatory
flows in the form of travelling waves and standing waves are stable in the light-shaded
and dark-shaded regions, respectively. Also shown is the wavenumber minimizing the linear
Rayleigh number for the onset of oscillatory convection (dashed curve); the critical wave-
number for the onset of steady roll convection is equal to π.

4.2.5. Stability regions: (δC , k/π)-space

The calculations described above were all performed at the externally imposed
wavenumber, k = π, rather than at a value that would minimize the Rayleigh number
for the onset of the oscillatory mode of instability. In order to appreciate the
significance in the pattern selection process of the optimum value of the wavenumber,
we show in figure 5 the stability boundaries as functions of the compositional ratio C̄
and the scaled wavenumber k/π with fixed S̄ = 0.5, K1 = 3 and K2 = 6. In figure 3(d )
a slice through S̄ = 0.5 corresponds to a slice through k/π = 1 in figure 5. The critical
value of the wavenumber as a function of C̄ is indicated by a dashed curve. We
see that this variation is rather weak, leading to the same sequence of transitions
on increasing C̄ as for k = π (cf. figure 3d ). We expect, therefore, that the value
k = π which we have chosen to display the stability results in the previous sections is
representative of the results which would involve the optimum k. It is also interesting
to note that a parameter range in which the supercritical Hopf bifurcation gives rise
to stable travelling waves is slightly larger than in the case of k = π.

Often, numerical experiments are carried out at a fixed value of the wavenumber.
Hence, in figure 5, the stability regions are given also for a wavenumber greater than
the critical one. We observe that the stability properties of the oscillatory patterns can
be profoundly affected by the choice of k. In particular, travelling waves are the only
stable pattern favoured for smaller values of k (π � k � 1.117π). At intermediate
k (1.117π � k � 1.172π), the travelling waves lose stability to standing waves as
C̄ increases; but they acquire it again on increasing C̄ yet further. For larger k

(k � 1.172π), the stable travelling waves are superseded by stable standing waves
with increasing C̄ . It is important to note that, with increasing k, the region where
the oscillatory instability is possible increases, with the portion in which the stable
standing waves are preferred gradually getting larger. Thus, if experimental control
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can be enforced on the size of convection cells, the oscillatory flows in the form of
standing waves can be exhibited by mushy-layer systems with much larger values
of the compositional ratio C̄ than expected from the linear theory (cf. Anderson &
Worster 1996).

4.2.6. Nonlinear detuning

At a Hopf bifurcation, the frequency of the travelling and standing waves is,
correct to O(ε0δ1), ω = δω01. In the nonlinear regime, the frequencies of the oscillatory
convecting states may differ from those predicted by the linear theory (see equation
(3.1e)). Analysing the time-independent solutions to phase equations derived from
(3.9), we obtain

ω = δω01 + ε2ωTW
2 = δω01 +

ci

ar

(ε|A TW|)2, (4.9a)

ω = δω01 + ε2ωSW
2 = δω01 +

ci + di

ar

(ε|A SW|)2, (4.9b)

for the frequency of the travelling and standing waves, respectively, in the neighbour-
hood of the Hopf bifurcation point. Here, the subscript i indicates the imaginary
part. Since ar is always positive over the parameter space where the oscillatory
states are possible, it follows from (4.9) that the nature of the nonlinear detuning is
determined by the signs of ci and ci + di. Here, we examine this issue asymptotically
in the limit ω01 → 0, capturing the portion of (C̄ , S̄)-parameter space close to the
boundary between the oscillatory and steady behaviours. Considering the dominant
behaviour as ω01 → 0, we find a critical value of K2,

K2 = 23
16

K2
1 , (4.10)

below which the frequency of the travelling waves increases with amplitude and
above which it decreases. In a similar way, for the standing waves we find

K2 =
1

36π2 − 64

[
(45π2 − 244)K2

1 + 9π2ΩC̄ K1

]
; (4.11)

now, however, the frequency of standing waves decreases with amplitude for K2

smaller than this critical value and increases for greater values.
These results can be discussed in the light of the stable oscillatory solutions

identified in the (C̄ , S̄)-parameter space at selected values of K1 and K2 (see figure 3).
For instance, we deduce that the stable, finite-amplitude travelling waves predicted to
occur when K1 = 3, K2 = 6 (see region II in figure 3d ) will propagate at a phase velocity
slightly greater than that determined by the linearized theory, provided the values of
S̄ and C̄ lie close to the boundary between the steady and oscillatory behaviours.

4.3. Structure of nonlinear oscillatory convection

We now examine the structure of the finite-amplitude oscillatory solutions. We
consider the two representative sets of the system control parameters which give rise to
the appearance of supercritical, and hence stable, oscillatory convection in the form of
travelling and standing waves respectively. For each parameter regime, we start with
a summary of linear theory, without which the nonlinear results would be incompre-
hensible. Although dominated by the eigensolutions of the linear problem, convective
oscillatory solutions at finite amplitude reveal several unexpected features that have
a particular bearing on the structural development of the resulting eutectic solid.
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4.3.1. Travelling waves

We consider first the travelling-wave solution, for S̄ = 0.5, C̄ = 0.35, K1 = 3, K2 = 6,
and δ = 0.1. Accordingly, the solution corresponds to a supercritically bifurcating
convective state (cf. figure 3d ). We take k = π, and focus on the left-travelling waves
only. The perturbation amplitude ε is fixed at ≈ 0.014, this being close to a critical
value for breakdown of the model (an incipient, supercritical chimney formation; see
figure 6c). At these parameters, R(o) ≈ 5.145, ω01 ≈ 1.064π and ωTW

20 ≈ −182.843π.
Linear theory (Anderson & Worster 1996), together with the basic-state solution

(2.11) and the leading-order infinitesimal perturbations (3.3a–d ), shows that at any
instant in time the spatial structure of the thermal and flow fields is identical to
that of the steady state. In particular, the flow field corresponds to convection in the
form of two-dimensional rolls with axes in the y-direction. The thermal fluctuations,
induced by the convective motion, lag behind the flow pattern as it translates
horizontally, with the vertical motion being aligned with cold rising fluid depleted
of solute, and hot falling fluid enriched in solute. The leading-order structure of
the solid fraction, however, differs from its steady-state equivalent: in the steady
state, the perturbations to the solid fraction lead to the formation of channels of
reduced solid fraction which are vertically oriented, but in oscillatory convection the
slope of the solid-fraction channels is, in general, non-monotonic. In consequence,
solid-fraction channels, being potential seed locations for chimney formation, occur
principally in the roll centres, rather than coinciding with the horizontal positions
where the upward flow takes its maximum. An account of quantification of these
issues in terms of ω01 is given in Anderson & Worster (1996).

We now turn to discussing the properties of the travelling-wave solution in the
nonlinear regime. Figure 6 shows a snapshot of the fields in the (x̄, z̄)-plane at t̄ =0.
Note that the fields are still time-periodic, though the wave pattern is translated
at a phase speed ω/k ≈ 0.069 which is less than that determined by the linear
theory. In contrast to the marginal case, the boundaries between adjacent cells are
no longer vertical (figure 6a): the cell boundary at which the flow is upwards leads
at the top and lags at the bottom, while the opposite is true for the cell boundary
at which the flow is downwards. Mathematically, this trapezoidal appearance of the
travelling-wave convection can be ascribed to the O(ε2δ0) flow-field correction which
effectively makes a phase of the flow field z̄-dependent. Note that this correction
is, in general, proportional to |A |2 − |B|2; thus it is present for a travelling wave
but not for a standing wave (cf. § 4.3.2). Physically, this structure reflects the spatial
adjustment of the flow field to the leading-order non-vertical solid-fraction channels,
occurring at O(ε2δ0). It is also important to note that the presence of this effect is
associated with the nonlinear variations of the permeability with the perturbations to
the basic-state solid fraction: this physical effect would not have been identified had
we taken K1 =O(δ) rather than K1 = O(1).

The disturbance of the thermal field is remarkably weak, with |εθ̂ | attaining at
most 2 % of the absolute maximum base-state value, perhaps emphasizing the
importance of compositional effects over the thermal ones in controlling the convective
dynamics of the system. Therefore, in figure 6(b), we have chosen to show the thermal
perturbation, εθ̂ , rather than the total thermal field. The upward motion is associated
with negative thermal fluctuations in the bulk of the mushy layer. This correlation is
expected since, even in this weakly nonlinear regime, compositional buoyancy for the
upward motion is still provided by the negative solutal perturbation.

The spatial structure of the solid-fraction field, shown in figure 6(c), is dominated
by the marginal solid-fraction distribution described above, confirming the presence
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Figure 6. Nonlinear stable travelling waves for S̄ =0.5, C̄ = 0.35, K1 = 3, K2 = 6, δ = 0.1 and
ε ≈ 0.014. A snapshot of (a) stream function, (b) perturbation temperature, and (c) solid
fraction in the (x̄, z̄)-plane at t̄ =0. For the stream function and perturbation temperature
the contours quantify 0.1 of the corresponding extreme values, and for the solid fraction 0.05
of the maximum. The maximum values attained by the contoured quantities in (a), (b) and
(c) are 0.552, 0.015 and 0.412, respectively. In (b), dashed contours indicate negative thermal
fluctuations. The nonlinear perturbations lead to channels of reduced solid fraction, indicated
by the dashed curves in (c). The wave pattern propagates towards the left as the mushy layer
advances upwards.

of a phase lag between the dissolution caused by the flow and the overall solidification
caused by pulling (Anderson & Worster 1996). Close inspection shows, however, that
point symmetry of the solid-fraction perturbation about the trace of the solid-fraction
channel, which is present in the linear case, is broken, as indicated by the lopsided
contours in the regions where the solid fraction attains its peak values. The loss of
symmetry in the nonlinear regime is a result of the additional heat that is transferred
from the upper regions of the mush through the advection of the marginal temperature
profile by the leading-order flow field, which tends, though lagging in time, to inhibit
growth of the solid phase. Curiously, in this supercritical regime, the solid fraction
drops to zero at some point along the solid-fraction channel, suggesting that the
formation of chimneys in the mushy layers may not be an exclusively subcritical
phenomenon.

The development of spatial asymmetry in the local solid fraction has important
implications for the compositional structure in the resulting eutectic solid. The
dimensionless bulk composition in the mushy region is defined as Θ̄ = (1 − φ)θ +C φ,
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which on evaluating at the solid–mush interface reduces to

Θ̄(x̄, z̄ = 0, t̄) = ε(1 + C )φ̂(x̄, z̄ = 0, t̄). (4.12)

This expression, describing the evolution of the local bulk composition in the eutectic
solid, is plotted in figure 8(a), below, for the same parameter values as used for figure 6.
As expected, the eutectic structure displays tilted behaviour, resulting from the vertical
pulling of the solid and the horizontal propagation of the travelling-wave pattern,
with the slope of the bulk-composition contours slightly larger than that determined
from the linear theory. For a fixed t̄ , corresponding to a horizontal slice through the
solid, the bulk composition exhibits purely sinusoidal variation in the horizontal at
the marginal stability limit. In the nonlinear regime, however, the bulk composition
rises more rapidly than it falls, so that the troughs are sharper than the peaks, as
can be seen in figure 8(a) (cf. the spatially asymmetric pattern of behaviour in figure
6c). Note that the regions where the bulk composition is locally decreased below its
basic-state zero value are a consequence of the upward flow which brings relatively
depleted fluid that causes dissolution of dendrites.

4.3.2. Standing waves

To investigate the development of standing-wave convection, we studied the finite-
amplitude solutions for S̄ = 1, C̄ = 0.2, K1 = 1, K2 = 1, and δ = 0.1. Then the
bifurcation is supercritical and the standing waves are stable (cf. figure 4c) in the
neighbourhood of R(o) ≈ 3.277. Again, ε is fixed at a maximum allowed value for
the validity of the model; ε ≈ 0.022. At these parameter values, ω01 ≈ 1.069π and
ωSW

20 ≈ −3.443π, so that the period of standing waves is T̄ = 2π/ω ≈ 18.993.
We shall focus first on describing standing waves at onset, thus completing the analy-

sis of the structure of leading-order oscillatory modes commenced by Anderson &
Worster (1996). Initially, the roll motion in a particular convection cell is clockwise,
say, and the velocity is at a maximum. As the oscillation proceeds, the flow field
falls off, drops to zero at t̄ = 1

4
T̄ so that the motion becomes anticlockwise, and

reaches its maximum again at t̄ = 1
2
T̄ . The behaviour during the second half of the

cycle follows in an obvious manner. Note that, in contrast to the pattern for the
travelling-wave mode, the rolls reverse direction without shifting their positions in
the horizontal. The thermal-field perturbation is temporally in phase with the flow
field as the mushy layer advances, with the same spatial correlation as in the steady
case described above, as might be expected. The discussion of the time-evolution of
the solid-fraction field is rendered somewhat more difficult. At any instant in time,
the propensity for chimney formation is highest at every cell boundary, and so the
leading-order solid-fraction channels are always aligned with the vertical and remain
fixed in the horizontal. In addition, depending on the value of ω01 the channels may
be continuous or they may appear divided, temporarily, into a number of vertical
sections, their extents being periodic functions of time. Also note that, because the
solid-fraction perturbations at the boundaries of a convection cell are out of phase
in time, the channels appear to grow at the expense of each other.

Much of this rich behaviour carries over into the nonlinear regime. Figure 7
shows the spatial structure of the fields at five successive stages during half of a full
cycle. Note that the cell boundaries are still vertical (see figure 7a), but owing to
a z̄-dependent temporal phase shift of the nonlinear flow-field corrections, there is
no instant in time at which the cells are completely at rest. This is reflected by the
appearance of relatively weak vertically stacked countercells during the flow reversal.
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(a) (b)
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Figure 7. Nonlinear stable standing waves for S̄ = 1, C̄ = 0.2, K1 = 1, K2 = 1, δ = 0.1 and
ε ≈ 0.022. Contours of (a) stream function and (b) local solid fraction in the (x̄, z̄)-plane at
five equally spaced instants in time during a half-cycle, starting from the top. For the stream
function the contours quantify 0.1 of the maximum, 0.602, attained at t̄ = 0; the contour levels
remain fixed throughout the sequence apart from the third instant, where the contours quantify
0.01 of the maximum. The solid-fraction contours quantify 0.05 of the maximum, 0.703,
attained at t̄ = 1

4
T̄ ; the contours remain fixed throughout the sequence. The solid-fraction

channels (dashed lines) are vertically oriented, and may appear at both boundaries of a
convection cell, though their vertical extents vary in time. See text for a more complete
description of this variation.

This pattern of behaviour is similar to that found by Schöpf & Zimmermann (1990)
in the context of small-amplitude standing-wave convection in binary fluid mixtures
with no-slip boundary conditions, although the underlying physical mechanism is, of
course, different. Here, it is the presence of the leading-order non-uniformity in the
permeability, measured by K1, which is responsible for this feature of the flow.

The development of the solid-fraction field is shown in figure 7(b), with the
corresponding behaviour of the bulk composition in the eutectic solid displayed
in figure 8(b). The solid fraction oscillates in much the same as the leading-order
eigenfunction of the linear problem, though, interestingly, with a slight preference for
the negative perturbations at the bottom of the mush. Notice also that, because the
nonlinear solid-fraction field is approximately out of phase in time with the thermal
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(a) (b)

x
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Figure 8. A space–time plot illustrating the stable oscillatory morphologies of the eutectic
solid produced by the mushy-layer convection in the form of (a) travelling waves and (b) stand-
ing waves. Contours of the local bulk composition in the eutectic solid, obtained from (4.12),
shown in (a) and (b) for the same parameter values as used in figures 6 and 7 respectively.
The spatial scale spans the same range as the horizontal scale in figures 6 and 7. The timescale
ranges over half a complete cycle, starting at t̄ = 0. Note, however, the different scales for t̄ in
(a) and (b), as the periods of oscillatory solutions are different (28.780 and 18.993, respectively).
Note also that the dimensionless time t̄ can be regarded as the dimensionless height of the
solid just formed. In both (a) and (b), the contours quantify 0.1 of the maximum, and dashed
contours have negative values. The maximum values attained by Θ̄ in (a) and (b) are 0.617
and 0.623 respectively.

and flow fields, the maximum amount of solid phase coincides with the moment
when the motion is almost halted and the thermal fluctuations are least.

5. Conclusions
We have studied the nonlinear development of two-dimensional oscillatory

convection in a mushy layer during binary alloy solidification. We performed a weakly
nonlinear stability analysis that extends the linear theory of Anderson & Worster
(1996) to the nonlinear regime. A key result of our analysis is a set of complex
amplitude equations which describe the evolution and stability of finite-amplitude
oscillatory convecting states in the vicinity of the (primary) Hopf bifurcation. By
analysing these equations, we have identified oscillatory solutions in the form of
travelling waves and standing waves, and determined the stability of each, and their
relative stability.

Our analysis of the oscillatory solution branches shows that either travelling waves
or standing waves can be (supercritically) stable, and thus preferred near the onset
of oscillatory convection. We find that a preference for distinct wave patterns, and
hence the possibility of their physical realization in the experiments, is determined
predominantly by a particular choice of the permeability coefficients K1 and K2, as
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indicated in figure 4. Our analysis thus emphasizes the importance of a specific form
of the constitutive relationship, relating the permeability to the local solid fraction,
in selecting the pattern of the oscillatory convection in mushy layers. Moreover, the
oscillatory solution that is stable has the greater value of the Nusselt number, and is
thus more efficient at transporting solute in the system.

We have also demonstrated a possibility of subcritical oscillatory behaviour in
mushy layers. We have found that the appearance of the subcritical Hopf bifurcation
hinges on a single physical effect associated with the leading-order non-uniformity
in the permeability due to the basic-state solid fraction and its perturbations.
This bifurcation cannot occur unless we consider a parameter regime which has
K1/(δC ) = O(1). It is interesting to note that the same nonlinear effect was responsible
for the appearance of the subcritical pitchfork bifurcation to the steady two-
dimensional roll solution in the analysis of Amberg & Homsy (1993). The subcritical
Hopf bifurcation in the present analysis gives rise to travelling-wave and standing-
wave solutions which are initially unstable (see figure 2). At larger amplitudes, these
solutions can acquire stability at the turning points associated with the saddle-node
bifurcations along the primary oscillatory branches; to follow this would demand a
higher-order analysis with an enhanced computing requirement.

We have also analysed the nonlinear structure and dynamics of oscillatory
convection. For instance, the results in § 4 suggest that, despite inferences from
linear theory, the travelling-wave convection favours spatially asymmetrical cells in
the nonlinear regime (see figure 6). A physical explanation of this was given in § 4. We
point out that a particular parameter regime, namely that in which K1/(δC ) = O(1)
so that the dominant non-uniformities in the permeability due to the basic-state solid
fraction and its perturbations are captured, is an important feature here.

The analysis presented in this paper has in part been motivated by the recent
experimental observations of Solomon & Hartley (1998). They performed experiments
on an aqueous solution of ammonium chloride and, by direct measurement of
the temperature field in the growing mushy layers, were indeed able to observe
periodic convective behaviour. Although intriguing in the light of the oscillatory
instability studied here, the sense of the flow did not cyclically reverse as the pattern
evolved, indicating that the observed behaviour may not be directly related to the
standing-wave pattern examined in our study. Instead, we anticipate that the periodic
pattern observed in their experiments arises from an intricate nonlinear interaction
between steady and oscillatory convecting states. An important extension of this
study will thus be to treat the behaviour of the mushy-layer system close to the
situation where the primary Hopf bifuraction coincides with the pitchfork bifurcation
to steady convection (a Takens–Bogdanov bifurcation). This multiple bifurcation
deserves particular attention partly because of its potential relevance to the vacillatory
motion seen by Solomon & Hartley (1998), and partly because typically the behaviour
identified near such a bifurcation persists for parameter values substantially different
from their critical values. Finally, it would be of general interest to consider three-
dimensional oscillatory patterns, and to determine their stability and competition with
the two-dimensional oscillatory states studied here. The present study forms a basis
for future investigation of these challenging problems.

This research was supported by a Royal Society/NATO Postdoctoral Fellowship
held by P. G. The authors would like to thank D. M. Anderson for helpful comments
on an earlier draft of this paper and J.H. P. Dawes for helpful discussions.
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Appendix. Coefficients of the amplitude equations
A purpose of the appendix is to provide expressions for the complex coefficients

a, b, c and d appearing in the amplitude equations (3.9), with the particular goal of
displaying the explicit dependence of the coefficients on the system control parameters
(or combinations thereof). Here, we concentrate upon the leading-order results, i.e.
on writing a = a0 + δa1, and similarly for b, c and d , terms a1, b1, c1 and d1 which
make small, of O(δ1), corrections are not recorded.

The coefficients of the linear terms of the amplitude equations (3.9) take the form

a0 =
π

k
Ω +

π(π2 + k2)

k
(
π2 − ω2

01

)
[

π2 + ω2
01 − 2π2e−iω01

π2 − ω2
01

− 8iπ2ω01(1 + e−iω01 )(
π2 − ω2

01

)2

]
S̄

ΩC̄ 2
, (A 1a)

b0 = 2πR20 − ia0ω20. (A 1b)

After a fair amount of algebra, we find that the coefficients of the nonlinear terms
in (3.9) are given by

c0 = − π

2k
(π2 + k2)2 + fc(k)

K1

ΩC̄
+ gc(k, ω01)

(
K1

ΩC̄

)2

+ hc(k, ω01)
K2

(ΩC̄ )2
, (A 2a)

d0 = −π

k
(π2 + k2)2 + fd(k, ω01)

K1

ΩC̄
+ gd(k, ω01)

(
K1

ΩC̄

)2

+ hd(k, ω01)
K2

(ΩC̄ )2
, (A 2b)

where

fc =
π

2k
(π2 + k2)(π2 + 3k2), (A 3a)

fd =
π(π2 + k2)

2k
(
π2 − ω2

01

)
[
4π2k2 − (π2 + 3k2)ω2
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iπ4

(
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π(π2 + k2)2
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Expressions for gc and gd are of sufficient complexity that little insight would be
gained by displaying them here. These extensive forms can be made available on
request from the authors or the JFM editorial office.
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